
A Verifiable Data Store and Exchange for an IoT
Environment

Abstract

A recent rise in the role which IoT devices play, in order to deem the cities as ’smart’ has led
to heightened access to these devices for the general public. This meteoric rise in the number of
IoT devices is abreast with enormous amounts of essential, marketable data generated by them.
While previously, bleeding-edge tech hubs and opportunistic governments used, governed and
administered these sophisticated devices, now they are becoming increasingly accessible to the
public for usage as well as ownership, and influence the lives of all the stakeholders. Thus,
in the modern smart city ecosystem, it is pertinent to protect the data generated by the
various IoT devices, to make it immutable, tamper-proof and more importantly verifiable,
with no single authority governing and opaquely managing it. In this project, we hence
propose a decentralized, trust-less data storage architecture which tackles the problem of data
verifiability and makes any data stored in it verifiable and immutable by practice.

1 Introduction
Numerous IoT devices revolve around smart cities. These are essentially micro-controller boards
installed intuitively at various avenues like public transport, traffic lights, public parks, research
laboratories weather stations throughout the city. With the advancement in the fields of network-
ing, a high bandwidth and stable connection of these devices to a cloud are now conceivable and
in fact, implemented. Thus, devices are more than capable of generating their own data and have
numerous sensors embedded within them. This live data specific to the city is a very essential and
marketable entity. It can be of extensive use to the research community, to study the patterns of
various walks of life, public habits, as well as the environmental and climatic fluctuations.

It is interesting to note, that access of technology to the common people has increased at a
dramatic pace with the low cost of developing controller chips. While earlier, it was bleeding
edge tech companies, private firms or the government itself which managed and interacted with
these devices, now the common public is an equally important stakeholder. This decade has been
marked by a sharp rise of the startup culture, and as a result, small groups of individuals now have
ownership of various IoT devices, and themselves have turned into data producers and consumers.
This has led to a new, unpredicted problem - data verifiability. With individuals turning into
data producers, it is difficult to prove the genuineness of data, hence there is a pressing need for
a mechanism or practice which makes it possible to verify data. Also, data once generated should
be tamper-proof, and stored inside an immutable data storage. Additionally, the data should not
be under the control of a single entity in order to make each stakeholder equally powerful in the
eco-system. Along with data, it is equally important to have an audit trail of the ownership of
devices, and their configuration. With the expanding digital market, there has emerged a need for
digital representation of hardware entities. With most of the transactions involving ownership of
even hardware now regulated through interconnected networks, there is a necessity of a complete
audit trail of their activity.

Blockchain, a technology which emerged to power cryptocurrencies has seen a meteoric rise
in its usage in various domains and is no longer restricted to cryptocurrencies. Also, it supports
data immutability, and decentralization by design. Ethereum [1], in particular, has taken a strong
initiative to make the development of Ethereum powered web apps called dApps (distributed apps)
feasible. Since the storage on blockchain is expensive, various off-chain storage alternatives which
complement the blockchain technology like - InterPlanetaryFileSystem [2] have emerged which
allow storing the data off-chain yet retaining its immutability. However, for our use case, wherein
we also need to verify the genuineness of the data - i.e. it’s actual origin is the one which is being
claimed, the transactions and calculations need to be very fast, without any latency as IoT devices

1



may be generating large volumes of data simultaneously in short intervals - too short for blockchain
as it requires mining and there is a significant time gap before each data point is written - and
since we require each data point to be verifiable, there would have to be a separate transaction
for each of the data points, something which would be very computationally expensive and time-
consuming on a traditional blockchain. Furthermore, querying for the data on the blockchain is not
as efficient as a traditional database can offer, for various applications. BigchainDB [3], a project
recently funded by the European Union has emerged as a technological breakthrough in the field
of immutable storage, which along with being tamper-proof is absolutely scalable, with a latency
comparable to traditional client-server systems while at the same time, featuring the properties
of a blockchain. In this project, we build a marketplace model on top of BigchainDB along with
data verification based upon a signature based public-private key infrastructure - Ed25519 [4] and
featuring a complete audit trail of a device ownership and configuration using the concept of digital
twins - a feature which BigchainDB supports natively. The marketplace shall allow individual
owners of data and devices to register themselves, create digital twins of their devices and make
the entire process from data generation to data storage and ownership completely transparent and
verifiable.

2 Motivation
Preceding section discussed how data is produced by various stakeholders with increased access
to a plethora of IoT devices, and how it is a prime commodity which has extensive use in several
domains. However, the genuineness of data is equally, if not more, important. Any research which
is carried out generates the results on the basis of the data fed into it, in the preliminary stages,
and predictions rely solely on the validity of data. Fake data can wreak havoc and have disastrous
consequences for the scientific and corporate community alike. Due to the increase in the number
of data producers, it is very easy to fake data, generating enormous amounts of random data to
populate datasets is very much conceivable. However, if strict regulations are put in place and
stringent rules are imposed by the authorities, it will hamper the data production by the masses,
something which is undesirable in order to realize the true potential of a holistic data-driven smart
society, in which all the stakeholders contribute their part. Thus, we propose to develop a verifiable
data store and exchange, in which it shall not only be possible to verify each single data point
stored inside an immutable storage, but also to keep track of the ownership of the IoT devices and
their various parameters at all times.

3 Problem Definition
The discussion in preceding sections stresses the importance of all the stakeholders of a smart city
eco-system having an equal authority and be eligible to become data producers without having to
worry about providing the genuineness of the data. To tackle this problem, we proposed developing
an exchange/marketplace embedded with a data verification module, built on top of BigchainDB - a
highly scalable database solution with blockchain like properties. The marketplace to be developed
shall fulfill the following requirements.

3.1 Immutability
The data once stored should be completely secure - authenticity, confidentiality, and integrity
should be maintained, and if tampered, it should be easily detectable.

3.2 Scalability
A smart city network can contain thousands of IoT devices, all sending simultaneous streams of
data. The system developed should thus have a very low latency and be scalable in general to
accommodate the number as well as the large size of data. Also once the data is stored, it should
be query-able with the same efficiency as a traditional database like MySQL, or MongoDB.

2



3.3 Verifiability
The data should be credible in order to make any use of it, and hence it should be possible to
verify each and every data point using an intuitive verification mechanism.

3.4 Decentralization
The system should be completely decentralized, without a single point of failure. The idyllic goal
would be to develop a Byzantine fault tolerant system, so even a physically compromised node
should not serve as a point of failure.

3.5 Audit trail of ownership and configuration
The system should allow the users to provide a complete audit trail of ownership and any config-
uration i.e. any abstract and non digital changes should have adequate digital representation.

4 Literature review
Internet of Things has swayed many areas, and there have been many IoT applications that have
improved system performance as well as quality of life such as healthcare, manufacturing, moni-
toring and so on [5]. The wireless sensors play key role in integrating the IoT device with central
controllers for further processing, moreover, they have to be "smarter" [6]. IoT devices generate
data continuously that can help improve not only healthcare but also improve autonomous driv-
ing, surveillance systems and so on. Researches like Nyugen’s[7], show that the industry as well
as researchers are interested in the IoT data and need a model for storage and exchange of this
data. It is estimated that IoT will reach 26 billion units by 2020, up from 0.9 billion in 2009, and
will impact the information available to supply chain partners and how the supply chain operates.
As a result, IoT would provide new opportunities as well as challenges [8]. Since the volume of
data is large and is expected to increase rapidly, a data store that scales horizontally is necessary.
Moreover, as the data would be from a plethora of sources, the data would be heterogeneous; a
data storage system that could store heterogeneous data is required.

For the challenges mentioned above, a system that is horizontally scalable and could store
heterogeneous data is required. Many traditional databases are based on structured relational
model. Although, relational databases are of eminent importance, they are ineffective in storing
and processing big data. In such scenarios distributed databases like NoSQL databases and Hadoop
are gaining popularity. NoSQL databases provide horizontal scaling, dynamic modification of data
schema, distributed index, etc. that relational databases don’t have [9]. On the other hand, NoSQL
databases lack in ACID properties. Many scholars have conducted researches on storing data with
NOSQL database. A framework is also proposed that allows use of Structured Query Language
(SQL) in relational as well as NoSQL databases [10]. Most of the researches have proposed storing
data from a individual sources separately. In [11], unified data storage that stores structured
as well as unstructured data from various sources is proposed. Although this does not provide
transparency and verifiability that any other user who wants to use data would want for assurance,
they store structured data in a database and the unstructured data in file system. Yet, the problem
is not solved, the requirement is one storage system that is diversified yet not heterogeneous.

Another problem is data integrity. Data integrity is an exacerbated issue in cloud storage as
data owners hardly control where their data are stored, who can actually access them, and how.
Nevertheless, more and more public and private data is being made public as “it relieves the burden
of maintenance cost as well as the overhead of storing data locally”[12]. Hence, it is an urgent need
to address data integrity. Data integrity is generally handled using cryptographic tools and methods
like encrypting data or signing it using cryptographic signatures. So for an attack to be effective
it would need violation of secret keys, yet once realized these attacks are undetectable. Therefore,
it is advisable to utilize rigorous data replication strategy to ensure anyhow data integrity. Data
replication and distribution pose threat to data integrity, as a attacker must compromise all the
data. This replication approach is widely used in cloud computing environments, where there is
abundance of distributed storage resources. Although, replicating data in cloud increases burden
of an attack in cloud environment, cloud providers could themselves collude with the attackers and
violate data integrity. Thus, blind trust must be avoided, not even the cloud providers should be

3



given access to use or manipulate delegation of data. Such a system could be brought by using
blockchain.

Nowadays, blockchain based databases are popular. Blockchain can be perceived as a replicated
database distributed among thousands of diverse nodes. In its first conception, it has been used
as a public ledger in BitCoin transactions [13]. The properties of blockchain make it important in
any field. The data once stored in the blockchain cannot be deleted, this property of immutability
ensures data integrity and consistency. The nodes are decentralized, thus there is no true owner
of a blockchain and any transaction cannot be successful until it has gained a majority of support
from the nodes in the network. The mining process used in BitCoin and Ethereum is still proof-of-
work (PoW). It includes a computationally intensive hashing task that regulates the average time
spent by a miner in generating a new block that is to be integrated to the chain. Once a miner
generates a block it broadcasts the blocks to other miners. Although proof-of-work ensures data
integrity, it has one major drawback: performance. This is due to braodcasting latency of blocks in
the network and the time intensive task of PoW. In BitCoin, the average latency is 10 minutes and
the throughput is about 7 transactions per second [14]. Another relevant concern is blockchain’s
stability, though, it has been well so far, there is no valid research that states why this is the
case and for how long would this be continued [14]. Encryptions provide data verifiability, the
owner can sign the data that is outsourced so that the source is no longer anonymous. Asymmetric
encryption provides two way security as the data cannot be forged and it cannot be used by illegal
user. Nonetheless, once tha keys are compromised, nothing remains safe, it is important that the
keys be kept as much secure as possible. In [15] Gaetani et.al. propose a blockchain database that
uses a rotation consensus mechanism instead of proof-of-work where a miner is selected as leader
at each round. The leader is responsible for receiving new operations, signing them with its private
key, and broadcasting them to other miners. All the miners add these operations to their local
ledger,and apply these to their local replicas. Another similar approach is acquired by BitCoin-NG
[16], a bitcoin protocol modified to improve performance.

Thus, it is found, that certain properties of a distributed system; like low latency, high through-
put is required for storage and to secure the data stored it is essential that the database is im-
mutable, decentralized and allows exchange of assets along with keeping track of them. A decen-
tralized and distributed storage is the answer that has the best of the two worlds. BigChainDB
[3] is one such blockchain database that works on same grounds as Bitcoin-NG [16] but employs
a Byzantine Fault Tolerant blockchian engine that uses voting based on proof-of-stake rather than
proof-of-work or rotational consensus mechanism that doesn’t consider the stake of a data owner
in order to store the data. BigchainDB allows malicious miners but isolates them and their nodes
from harming the rest of the nodes. BigchainDB seems a promising database that makes the appli-
cation stack (that comprises of application, processing, file storage and database) into a complete
decentralized and distributed application stack that paves way to Web3.0.

5 Proposed Methodology

5.1 Data exchange and Verifiable data
We propose to build a data exchange, a web application which allows several device owners to
register their devices.This concept represents the convergence of the physical and the virtual world
where every industrial product will get a dynamic digital representation. Throughout the product
development life cycle, right from the design phase to the deployment phase, organizations can
have a complete digital foot print of their products.

It is possible, to model the hardware device, completely wherein, the the user is the owner
of the device, the device itself has the ownership of the sensors. The notion of maintaining a
log of ownership of hardware equipments, is a long standing tradition, not introduced with the
introduction of digital twins; however, traditional logs are explicit, in the sense that at first, the
ownership or configuration state changes, and then that change is logged manually, usually by a
third party. It is easily possible for someone with malicious intent, to log the data incorrectly, and
there is no means to verify the data. On the other hand, the novelty of our approach lies in the key
fact that ownership, and other configuration state changes, update their counterpart, automatically,
without the requirement of executing a manual procedure or involving any interaction with users.
And since BigchainDB is an immutable database, there is no editing or UPDATE operation in
database terminology possible. Hence, each time a change occurs, a new transaction record is

4



created. This results in an immutable audit trail of all the previous devices, at a fraction of the
computational cost of a traditional blockchain.

Features Blockchain Distributed Database BigchainDB
Immutability 4 8 4

No Central Authority 4 8 4
Assets over network 4 8 4
High Throughput 8 4 4

Low Latency 8 4 4
Queryable 8 4 4

Table 1: Features of BigchainDB.

We intend to use BigchainDB [3] which uses some clever engineering techniques that make it an
enterprise-grade distributed system that incorporates a blockchain infrastructure. It is a hybrid sys-
tem that has the best of both, a blockchain and distributed system and hence, overcomes problems
generally faced by the two. Table 1 offers a comprehensive comparison of bigchaindb with other
technologies. It offers traditional benefits of blockchain, like asset transfer, tamper resistance and
decentralized storage and control. It has capabilities of low latency, high throughput, full-featured
NoSQL query language, high capacity and many others that a NoSQL database like MongoDB
can provide. Tendermint [17], a Byzantine Fault Tolerant blockchain virtual engine provides plug-
and-play consensus. It uses proof-of-stake rather than traditional proof-of-work for validation and
consensus voting. Figure 1 shows the components of a BigchainDB nodes. For Byzantine Fault
Tolerance, BigchainDB requires a cluster of minimum of 4 nodes, which can communicate with
each other. We intend to use docker containers to deploy such a cluster. BigchainDB exposes
an HTTP API, we intend to build our own custom API on top of it, which will allow our data
exchange platform to interact with BigchainDB. Also, the custom API will allow us to successfully
query the data with the same efficiency as an industry grade database management system, as the
support for querying in BigchainDB is limited.

5.2 Verification
The data verification uses the cryptographic algorithm Ed25519 which uses an asymmetric public-
private key pair. Unlike traditional approaches, raw data is not sent directly to the BigchainDB
server, rather it is at first, one-way encrypted using SHA-3 256 Algorithm, and a hash is obtained.
This hash is then signed by the private key, using the crypto functions exposed by the Ed25519
library. The reason any form of raw data is first converted to a hash using SHA-3 is that, it helps
in maintaining the process efficiently and is of constant time. If raw data which is highly variable
in size is converted directly, it will prove to be computationally expensive to sign it, if it’s large in
size, whereas SHA-3 ensures that, the generated hash is constant in size (64 bits). The signing of
hash, generates a signature.

It is important to note that the integrity of private key must be maintained, i.e., it should
be inside tamper-proof hardware, whose seal if broken should render the node as compromised
and the servers should refuse accepting data from the given node. This problem of hardware
integrity lies in the domain of remote attestation. [18]. Trusted Platform Module or TPM is an
international standard which is used for cryptographically securing devices. TPM chips are used
to cryptographically secure hardware devices.

5



Figure 1: The verification algorithm.

As Figure 1 shows, these three components, the public key, the signature, and the hash which
was signed can then be used to verify the validity of data. For instance, the SHA-3 hash for
hello world is 644bcc7e564373040999aac89e7622f3ca71fba1d972fd94a31c3bfbf24e3938. Figure 11,
shows the signing and verification procedure for the given string using a javascript implementation
of Ed25519. Figure 2a shows signing with the private key, which results in a signature, while
Figure 2b shows the verification taking place. Figure 3 shows the connections of the Raspberry Pi
to achieve the result.

(a) Signature generation (b) Data Verification

Figure 2: An example of data verification

6



Figure 3: Raspberry Pi - Set Up

6 Hardware and Software requirements

6.1 BigchainDB
BigchainDB is like a usual database with added characteristics of blockchain. The properties
of blockchain that are included are decentralization, owner-controlled assets, immutability. The
properties of database include high transaction rate, indexing and querying of structured data,
low latency. The data in BigchainDB is stored in transactions. For querying in BigchainDB, a
node operator can use the power of MongoDB’s query engine to search and query all stored data,
including all transactions, assets and metadata. The node operator can decide for themselves how
much of that query power they expose to external users. Figure 6 shows the internal structure of
a BigchainDB node, and the various components present inside it.

7



Figure 4: The Components of a bigchainDB node.

In BigchainDB, transactions are the smallest records and are used to register, create, issue or
transfer things (e.g. assets). The ID of a transaction is a unique hash that identifies a transaction.
There are two kinds of transactions: CREATE transactions and TRANSFER transactions.

6.1.1 CREATE Transactions

The CREATE transaction creates a new asset on the network. It is the start of a whole chain of
transactions that handle this asset. There can be only one CREATE transaction per asset, and an
asset can never be altered, it is immutable.

6.1.2 TRANSFER Transactions

TRANSFER transaction is used to update the information of an asset and to transfer the own-
ership of an asset. TRANSFER transactions build upon previous transactions. A TRANSFER
transaction can only transfer shares of one asset at a time.

In BigchainDB, data is structured as assets. An asset can characterize any physical or digital
object that you can think of like a car, a data set or an intellectual property right. These assets
can be registered on BigchainDB either by users in CREATE transactions or transferred (or
updated) to other users in TRANSFER transactions. At BigchainDB, the primary focus is assets
(e.g. a client order can be an asset that is then tracked across its entire lifecycle). This switch in
perspective from a process-centric towards an asset-centric view influences much of how we build
applications.
An Input to a transaction in BigchainDB is a pointer to an output of a previous transaction. It
specifies to whom an asset belonged before and it provides a proof that the conditions required to
transfer the ownership of that asset are fulfilled. In a CREATE transaction, there is no previous
owner, so an input in a CREATE transaction simply specifies who the person registering the
object is. In a TRANSFER transaction, an input contains a proof that the user is authorized to
"spend" (transfer or update) this particular output. In practical terms, this means that with the
input, a user is stating which asset (e.g. the bike) should be transferred.
A transaction Output specifies the conditions that need to be fulfilled to change the ownership
of a specific asset. For instance: to transfer a bicycle, a person needs to sign the transaction with
his or her private key. This also implicitly contains the information that the public key associated
with that private key is the current owner of the asset. A transaction can also have multiple
outputs. These are called divisible assets.

8



The metadata field allows users to add additional data to a transaction. This can be any type
of data, like the age of a bicycle or the kilometers driven. The good thing about the metadata is
that it can be updated with every transaction. In contrast to the data in the asset field, the
metadata field allows to add new information to every transaction.
The Transaction ID is a unique hash that identifies a transaction. It contains all the
information about the transaction in a hashed way.

6.2 Tendermint
Tendermint is software for securely and consistently replicating an application on many machines.
By securely, we mean that Tendermint works even if up to 1/3 of machines fail in arbitrary ways.
By consistently, we mean that every non-faulty machine sees the same transaction log and computes
the same state. Secure and consistent replication is a fundamental problem in distributed systems;
it plays a critical role in the fault tolerance of a broad range of applications, from currencies, to
elections, to infrastructure orchestration, and beyond.

Tendermint is designed to be easy-to-use, simple-to-understand, highly performant, and useful
for a wide variety of distributed applications.

Figure 5: Communication between Bigchaindb nodes

Figure 5 shows how BigchainDB nodes communicate with each other.
The nodes in BigchainDB communicate with each other using Tendermint [17] wire protocols.

There’s a local MongoDB database in every BigchainDB node, but they’re all independent. Messing
with the MongoDB on one node won’t affect any of the others. Another difference is that all the
replication, voting, and consensus logic is done by Tendermint, not MongoDB or BigchainDB.
Tendermint is a software that connects the nodes and gets them all agreeing on the current state.
It will get them to agree even if up to 1/3rd of the nodes fail in arbitrary ways. However, Tendermint
has no notion of what is inside the node. Tendermint doesn’t implement the nodes. It leaves that
up to like BigchainDB.

Tendermint is known to be quite fast, at least compared to many other operational blockchain
systems (such as Bitcoin or Ethereum). Tests have achieved transaction rates of thousands of
transactions per second. The latency from the time a transaction is submitted to the time it’s
included in a finalized block is around one second, for a global network.

6.3 Docker
Docker is a tool designed to make it easier to create, deploy, and run applications by using con-
tainers. Containers allow a developer to package up an application with all of the parts it needs,
such as libraries and other dependencies, and ship it all out as one package. By doing so, thanks

9



to the container, the developer can rest assured that the application will run on any other Linux
machine regardless of any customized settings that machine might have that could differ from the
machine used for writing and testing the code.

Docker is able to share the host OS across multiple “Containers” rather than requiring each one
to have and run its own full operating system. This allows you to encapsulate your application into
a reusable module that can be plugged in and run on any machine where resources are available.
This allows for more fine grained resource allocation and can minimize the amount of wasted CPU
or memory resources.

And importantly, Docker is open source. This means that anyone can contribute to Docker and
extend it to meet their own needs if they need additional features that aren’t available out of the
box.

6.4 Ed25519

Figure 6: Digital Signature Verification

Figure 6 is a flowchart that shows how the data is first signed digitally and then verified.
Ed25519 is a public key verification system with remarkable fast key generation and signing

mechanisms [4]. It boasts a high security level with collision to resistance to hash collisions.
Ed25519 is featured in several python and C packages, which provide the users an abstract layer,
and allows them to sign and verify the data without dwelving into complexities of cryptography.

6.5 Raspberry Pi
The Raspberry Pi is a low cost, small sized computer that plugs into a computer monitor or TV,
and uses a standard keyboard and mouse. It is a little device that enables people to explore
computing, and to learn how to program in languages like Scratch and Python. It’s capable of
doing everything you’d expect a desktop computer to do, from browsing the internet and playing
high-definition video, to making spreadsheets, word-processing.

The following figure shows how the connections are implemented in the Raspberry Pi.

10



Figure 7: Raspberry Pi - Connections

Raspberry Pi has the ability to interact with the outside world, and has been used in a wide
array of digital maker projects, from music machines to weather stations and birdhouses with infra-
red cameras. The Raspberry Pi was designed for the Linux operating system, and many Linux
distributions now have a version optimized for it.

6.6 IoT Sensors
A sensor is a device that is able to detect changes in an environment. By itself, a sensor is useless,
but when we use it in an electronic system, it plays a key role. A sensor is able to measure a
physical phenomenon (like temperature, pressure, and so on) and transform it into an electric
signal.

The Internet of Things is one of the most important and promising technologies today. Around
us, there are smartphones, wearables, and other devices, all of which use sensors. Nowadays,
sensors play an important role in our life and as well as in IoT. Sensors monitor our health status
(e.g. a heartbeat), air quality, home security, and are widely used in the Industrial Internet of
Things (IIoT) to monitor production processes.

IoT sensor devices are the key ingredient in the overall IoT system. IoT sensor devices are
sensors that can communicate their readings to internet cloud services for further aggregation and
trend analysis.

11



6.6.1 SKG 13BL GPS Engine Module

The SKG13BL is a complete GPS engine module that features super sensitivity, ultra low power
and small form factor. The GPS signal is applied to the antenna input of module, and a complete
serial data message with position, velocity and time information is presented at the serial interface
with NMEA protocol or custom protocol. The small form factor and low power consumption make
the module easy to integrate into portable device like PNDs, mobile phones, cameras and vehicle
navigation systems.

6.7 Node.js
Node.js is an open-source, cross-platform JavaScript run-time environment that executes JavaScript
code outside of a browser. Node.js lets developers use JavaScript to write Command Line tools and
for server-side scripting—running scripts server-side to produce dynamic web page content before
the page is sent to the user’s web browser. Consequently, Node.js represents a "JavaScript every-
where" paradigm, unifying web application development around a single programming language,
rather than different languages for server side and client side scripts.

Node.js has an event-driven architecture capable of asynchronous I/O. These design choices aim
to optimize throughput and scalability in web applications with many input/output operations,
as well as for real-time Web applications (e.g., real-time communication programs and browser
games).

6.8 Google Cloud Platform
Google Cloud Platform, offered by Google, is a suite of cloud computing services that runs on
the same infrastructure that Google uses internally for its end-user products. Alongside a set of
management tools, it provides a series of modular cloud services including computing, data storage,
data analytics and machine learning. Google Cloud Platform provides Infrastructure as a service,
Platform as a service, and Serverless computing environments.

6.9 Monit
Monit is a small Open Source utility for managing and monitoring Unix systems. Monit conducts
automatic maintenance and repair and can execute meaningful causal actions in error situations.

The BigchainDB and Tendermint processes are managed together using Monit. BigchainDB
and Tendermint are managed together, because if BigchainDB is stopped (or crashes) and is
restarted, Tendermint won’t try reconnecting to it. (That’s not a bug. It’s just how Tendermint
works.)

Monit will run the BigchainDB and Tendermint processes and restart them when they crash.
If the root bigchaindb process crashes, Monit will also restart the Tendermint process.

7 Implementation

7.1 Virtual Machines and BigchainDB nodes
Google cloud platform(GCP) was used to create 4 instances of virtual machines powered by Ubuntu
18 LTS. The 4 instances have external public IP Addresses via which they establish communication
to allow for BigchainDB to replicate data.

Milestone Achieved Deadline
Virtual CPUs 1 core
Random Access Memory 4 GB
Storage Instance 10 GB
Operating System Ubuntu 18.04 LTS

Table 2: Timeline.

Each of the VMs represent one of the nodes of the BigchainDB cluster. Each node was config-
ured to support an instance of MongoDB, Tendermint, and BigchainDB server each. All three of

12



the components need to execute simultaneously in order for them to act as a BigchainDB node.This
is achieved through monit. Monit daemon automatically starts all three of the processes as soon
as the VM machine boots.

7.2 Raspberry Pi and SKG 13BL GPS Module
On the client side, a Raspberry Pi is interfaced with a SKG13BL GPS Module as show in figure.
A system service is created, which runs a javascript script as soon as the system boots. The
GPS receiver module uses Universal Asynchronous Receiver/Transmitter(UART) communication
to communicate with controller or PC terminal. The hardware interface for GPS units is designed
to meet the National Marine Electronics Association (NMEA) requirements. We extract Latitude,
Longitude and time information from string received from GPS module using Python. After
extraction, an Asset object is created as as required for a CREATE transaction. The transaction
object is signed by the private key of the Raspberry Pi device, which is hardcoded into it. A
subsequent POST request is sent to one of the 4 BigchainDB nodes, to commit the transaction. A
successful transaction results in replication of data to all 4 of the nodes instantaneously.

8 Results
To fulfill the notion of the verifiability introduced at the beginning, a verification wizard, aided by
the consortium of BigchainDB nodes is generated by leveraging the Crypto Modules of Python3.
For verification of a given data point, three entities are essential - the SHA-256 hash of the data
point, the public key of the IoT Node which generated the data point, and the signature generated
when the hash was signed by the corresponding private key of the IoT Node. Hence we designed
an intuitive,user-friendly datapoint verification wizard.

It has been devised to aid the end-user, even if totally unaware of crypto or validation processes,
to audit data independently, through a graphical interface, with an easy point-and-click experience.

Figure 8: Data Verification Wizard Step 1

13



The wizard operates in three steps. First step as shown in Fig. 8 is an informative step.
It shows the raw readings, with an option to see the entire response - the actual message which
was encrypted as mentioned previously. It also makes it convenient for the user by extracting the
signature from the fulfillment object, the public key is displayed as well. These three pieces of
information are self-sufficient to verify the validity of the data.

The step 2 of the wizard which is shown in Fig.̃reffig:verification-2.png presents an option to
the user to generate the SHA-256 hash of the full response and shows the data to be encrypted
in a field which is intentionally editable, to allow the user to tamper with the data, and see the
outcome of verification.

Figure 9: Data Verification Wizard Step 2

After generating the hash using the wizard, or entering the SHA3-256 hash generated from
an external source (the hash field is also editable), the user lands on step 3, the final step of the
verification wizard as shown in Fig. 10. On pressing the verify button the hash is verified against
the public key and the signature if the data has not been tampered with, and the public key is
indeed of the IoT node which signed the data hash, the verification succeeds, else it fails and the
wizard shows the appropriate message as shown in Fig. 11a and Fig. 11b respectively. This last
step again can be carried out independently and there is no compulsion to use this wizard for
verifying the hash against the signature.

14



Figure 10: Data Verification Wizard Step 3

(a) Successful data verification (b) Failure of data verification

Figure 11: Outcomes of verification wizard step-3

9 Conclusion
The preliminary work so far in the project has allowed us to find a suitable alternative for blockchain
for getting an immutable data storage, without compromising the efficiency of an industrial grade
database - BigchainDB. Also, in order to achieve the goal of data verifiability, Ed255519, has
been tested in isolation, by feeding it a random feed of data, and can later be used with live
data coming from sensors. The verification wizard successfully acts as a proofing mechanism for
the Public Private Key based signature verification approach. The instantaneous reflection of the
readings as soon as they are generated in the Raspberry Pi Module, showcase the feasibility of our
work in a networking domain.

References
[1] Gavin Wood, Ethereum: A Secure Decentralised Generalised Transaction Ledger, 2014

[2] Benet, Juan. "IPFS-content addressed, versioned, P2P file system." arXiv preprint
arXiv:1407.3561 (2014).

[3] Trent McConaghy, Rodolphe M., Andreas M.r,Dimitri De J., Troy McConaghy, Greg McMullen,
Ryan H., Sylvain B., and Alberto G., BigchainDB: A Scalable Blockchain Database, June 8, 2016.

[4] Bernstein, D.J., Duif, N., Lange, T., Schwabe, P. and Yang, B.Y., 2012. High-speed high-
security signatures. Journal of Cryptographic Engineering, 2(2), pp.77-89.

15



[5] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision,
architectural elements, and future directions,” Future Gener. Comput. Syst., vol. 29, no. 7, pp.
1645–1660, 2013.

[6] A. Biru, R. Minerva, and D. Rotondi, “Towards a definition of the Internet of Things (IoT),”
IEEE Tech. Rep., 2015. [Online]. Available: http://iot.ieee.org/definition.html

[7] Nguyen Cong Luong, Dinh Thai Hoang, Ping Wang, Dusit Niyato, Dong In Kim, and Zhu
Han, "Data Collection and Wireless Communication in Internet of Things (IoT) Using Economic
Analysis and Pricing Models: A Survey," IEEE Communications Surveys & Tutorials, vol. 18,
no. 4, fourth quater, 2016

[8] Zeng D., S. Guo, Z. Cheng The web of things: a survey J. Commun., 6 (6) (2011), pp. 424-438

[9] J. Guo, L. Xu, G. Xiao, and Z. Gong, “Improving multilingual semantic interoperation in cross-
organizational enterprise systems through concept disambiguation,” IEEE Trans. Ind. Informat.,
vol. 8, no. 3, pp. 647–658, Aug. 2012.

[10] O. Curé, R. Hecht, C. Duc, and M. Lamolle, “Data integration over NoSQL stores using access
path based mappings,” Lect. Notes Comput. Sci., vol. 6860, pp. 481–495, 2011.

[11] An IoT-Oriented Data Storage Framework in Cloud Computing Platform Lihong Jiang, Li
Da Xu, Hongming Cai, Zuhai Jiang, Fenglin Bu, and Boyi Xu.

[12] Mehdi Sookhak, Abdullah Gani, Hamid Talebian, Adnan Akhunzada, Samee U. Khan, Rajku-
mar Buyya, and Albert Y. Zomaya. Remote Data Auditing in Cloud Computing Environments:
A Survey, Taxonomy, and Open Issues. ACM Comput. Surv., 47(4):65:1–65:34, May 2015.

[13] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. Available at
https://bitcoin.org/bitcoin.pdf.

[14] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A Kroll, and
Edward W Felten. Sok: Research perspectives and challenges for bitcoin and cryptocurrencies.
In 2015 IEEE Symposium on Security and Privacy, pages 104–121. IEEE, 2015.

[15] Gaetani, E., Aniello, Leonardo, Baldoni, Roberto, Lombardi, Federico, Margheri, Andrea
and Sassone, Vladimiro, Blockchain-based database to ensure data integrity in cloud computing
environments, Italian Conference on Cybersecurity, Venice, Italy, 2017.

[16] Ittay Eyal, Adem Efe Gencer, Emin G¨un Sirer, and Robbert Van Renesse. Bitcoin-NG: A
scalable blockchain protocol. In13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), pages 45–59, 2016.

[17] Jae Kwon, Tendermint: Consensus without Mining, 2014.

[18] Jain, L., Vyas, J. (2008). Security analysis of remote attestation. CS259 Project Report, Tech.
Rep.

16


	Introduction
	Motivation
	Problem Definition
	Immutability
	Scalability
	Verifiability
	Decentralization
	Audit trail of ownership and configuration

	Literature review
	Proposed Methodology
	Data exchange and Verifiable data
	Verification

	Hardware and Software requirements
	BigchainDB
	CREATE Transactions
	TRANSFER Transactions

	Tendermint
	Docker
	Ed25519
	Raspberry Pi
	IoT Sensors
	SKG 13BL GPS Engine Module

	Node.js
	Google Cloud Platform
	Monit

	Implementation
	Virtual Machines and BigchainDB nodes
	Raspberry Pi and SKG 13BL GPS Module

	Results
	Conclusion

